Small eigenvalues of the Witten Laplacian acting on p-forms on a surface

نویسنده

  • Dorian Le Peutrec
چکیده

In this article, we are interested in the exponentially small eigenvalues of the self adjoint realization of the semiclassical Witten Laplacian ∆ f,h, in the general framework of p-forms, on a connected compact Riemannian manifold without boundary. Our purpose is to notice that the knowledge of (the asymptotic formulas for) the smallest non zero eigenvalues of the self adjoint realization of ∆ f,h (acting on functions), presented in [HeKlNi], essentially contains all the necessary information to the treatment of the case of oriented surfaces, for p-forms. The function f is assumed to be a Morse function on Ω. MSC 2010: 58J37, 58J10, 81Q10, 58A10, 15A18.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs

Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...

متن کامل

Resurgent Analysis of the Witten Laplacian in One Dimension

The Witten Laplacian corresponding to a Morse function on the circle is studied using methods of complex WKB and resurgent analysis. It is shown that under certain assumptions the low-lying eigenvalues of the Witten Laplacian are resurgent.

متن کامل

Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian

This article follows the previous works [HKN] by Helffer-KleinNier and [HeNi1] by Helffer-Nier about the metastability in reversible diffusion processes via a Witten complex approach. Again, exponentially small eigenvalues of some self-adjoint realization of ∆ f,h = −h∆ + |∇f(x)| − h∆f(x) , are considered as the small parameter h > 0 goes to 0. The function f is assumed to be a Morse function o...

متن کامل

On Eccentricity Version of Laplacian Energy of a Graph

The energy of a graph G is equal to the sum of absolute values of the eigenvalues of the adjacency matrix of G, whereas the Laplacian energy of a graph G is equal to the sum of the absolute value of the difference between the eigenvalues of the Laplacian matrix of G and the average degree of the vertices of G. Motivated by the work from Sharafdini an...

متن کامل

On Relation between the Kirchhoff Index and Laplacian-Energy-Like Invariant of Graphs

Let G be a simple connected graph with n ≤ 2 vertices and m edges, and let μ1 ≥ μ2 ≥...≥μn-1 >μn=0 be its Laplacian eigenvalues. The Kirchhoff index and Laplacian-energy-like invariant (LEL) of graph G are defined as Kf(G)=nΣi=1n-1<...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Asymptotic Analysis

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2011